Covering a Finite Group by the Conjugates of a Coset
نویسنده
چکیده
We study pairs (G,A) where G is a finite group and A < G is maximal, satisfying ⋃ g∈G (Ax) = G − {1G} for all x ∈ G − A. We prove that this condition defines a class of permutation groups, denoted CCI, which is a subclass of the class of primitive permutation groups. We prove that CCI contains the class of 2-transitive groups. We also prove that groups in CCI are either affi ne or almost simple. In the affi ne case each CCI group must be 2-transitive, while an almost simple CCI group needs not be 2transitive. We give various results on the almost simple case and compare between the CCI class and other recently studied classes of groups which lie between the 2-transitive and the primitive permutation groups.
منابع مشابه
Partial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملRepresentations of Double Coset Lie Hypergroups
We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.
متن کاملSome relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
متن کاملDefining relations of a group $Gamma= G^{3,4}(2,Z)$ and its action on real quadratic field
In this paper, we have shown that the coset diagrams for the action of a linear-fractional group $Gamma$ generated by the linear-fractional transformations $r:zrightarrow frac{z-1}{z}$ and $s:zrightarrow frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^{3}=s^{4}=1$ are defining relations for $Gamma$. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015